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The problem

* Too many patients,
not enough ambulances —
Who should go first?

* Study goals:
* Ensure patient safety
* Generate high-quality evidence
* Open source implementation

* How to clinically evaluate a novel
triage algorithm with no budget?

Number of calls per hour
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Some lessons

 Study population selection

e OQutcome definition

* Intervention & study design

* Estimand selection & Power calculation
* Ethics & practice

* Future directions for development



Prehospital populations

* Higher acuity
* Rapid assessment
* High sensitivity
 Specific, rare syndromes
* Simple outcome definitions
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* Lower acuity
* Looser time constraints
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* Need for differentiation
* Comparisons across etiologies
* Tricky to define relevant outcomes




Outcome definition

* Define a set of outcome
measures which correspond
with:

e Qualitative, clinical domain
knowlege
 Existing patient risk scoring

tools
e Study Outcome

e Correlated with, but not
caused by model outcomes

ML Initial
model assessment
ML Ambulance
model priority
ML Ambulance
model interventions
ML Hospital
model outcome
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Machine learning Assisted Differentiation of Low-

Acuity patients at Dispatch (MADLAD): A Randomized
Control Trial

* Question: Does information
from a ML model improve
triage accuracy at dispatch?

 Sample: 1500 "resource
constrained situations” in
Uppsala and Vastmanland

e Method: RCT — With or
without information from
the tool
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Estimand definition

* Initially: Difference in NEWS
score between prioritized vs.
Non-prioritized patients

* How to handle multiple non-
priorizized patients?
* Odd distribution of NEWS scores —

Ratio scale? What does the
difference mean?

* Finally: Dichotomized outcome

* Loss of power to achieve more
interpretable results

Power estimation

* Relatively simple to estimate
model accuracy — But no data on
historical nurse decisions!

e Simulate accuracy of
comparisons between 2A and 2B
assignments

* Assumed 100% compliance with
model



Ethics approval

e Study design minimizes risk
* All patients get an ambulance eventually!
* ... But also minimizes potential benefits

* Approval for "Assumed consent”: Send patients
information afterwards and provide an
opportunituy to opt-out

* Initially high rates of opt-out — Reformulation of
Informed consent letter & Form



Quality Assurance

* How to continuously ensure patient safety without exposing
study results?

* Evaluate differentiation between individuals throughout study
e Evaluate compliance (ca 80%)
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Further Development

* Model development
e Additional structured data from patient history
* Parsing audio data — Good open models now available (Whisper)

* Regulatory issues
* How to handle regulatory approval without profit motive?
e Continued use as "Self developed medical device”:

* In Sweden: Same documentation as CE marking, but no certification process
* Applications
* Non-randomized implementation
 Ambulance referral risk calculator (link)


http://www.opentriage.net/ui/vitals

Cheers!

 Source code: https://github.com/dnspangler/openTriage

* Demo: https://opentriage.net/ui/vitals

e Validation study: https://doi.org/10.1371/journal.pone.0226518
* RCT protocol: https://clinicaltrials.gov/study/NCT04757194

douglas.spangler@akademiska.se
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