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This presentation

« Our story: Why trying Al to improve survival from cardiac arrest

 QOur research: who is better in cardiac arrest call: humans or
artificial intelligence?

» The potential of using artificial Intelligence as a decision tool
* What's next
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The role of the dispatcher

We know
1. Dispatcher recognition of cardiac arrest increases survival rate by 200%
2. Bystander CPR increases survival rate by 300-400%

3. AED used - survival rate up to 50-70%

Dispatcher identifying cardiac arrests, initiates bystander CPR, provide
guidance on CPR and refer to an AED has a huge impact on survival

REGION



. . UNIVERSITY OF COPENHAGEN
The Capltal Reg|0n Of Denmark FACULTY OF HEALTH AND MEDICAL SCIENCES
Emergency Medical Services Copenhagen

Who i1dentifies cardiac arrest

- Bystander identifies 20 % of cardiac arrest cases and call

 Dispatcher identifies an additional 50-60 % - best results

» Missing 25% of all cardiac arrest during the call
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Our idea and collaboration with a start-up Corti
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Editorial

Man vs. machine? The future of emergency

medical dispatching

The role of emergency medical dispatch (EMD) in out-of-hospital
cardiac arrest is incrBasingly being recognized as an underutilized
resource in a number of ways. From merely being the recipient of a
bystander’s call for an ambulance, we are recognizing that the EMD
has a pivotal role in helping diagnose cardiac arrest, initiate
resuscitation and support lay rescuers in optimizing resuscitation
efforts.”? As health care professionals they have access to increasing
resources, and new technologies and innovations keep changing their
role in the chain of survival.* Many EMD systems are now able to map
out the nearest Automated External Defibrillators (AEDs), and some
can even dispatch additional nearby volunteer lay rescuers to bringan

verbal confirmation needed to pinpoint time to recognition without
accurately reflecting delayed recognition by the dispatcher. The
difficulty in defining the exact time point of dispatcher cardiac arrest
recognition challenges both EMD research and quality improvement
efforts.

The third objective of this study was exploring how machine
learning performed differently compared to dispatchers. While very
few arrests were only identified by dispatchers, there were some
interesting differences in the arrests only identified by the machine that
invites speculation. It is interesting that the machine outperforms the
dispatcher where the caller witnesses the arrest.® One might
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What is Al or machine learning
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Incident responded to by Emergency Medical Services Copenhagen with associated calls
n=110,518

Obvious sign of death, n = 958

= Voicelog damaged/disconnected, n = 724

Incidents labelled with OHCA, identified within Danish Cardiac Arrest Registry
n=108.836
OHCA=1,147
Not OHCA = 107,689

OHCA* witnessed by ambulance personnel, n= 126

>] CPRftinitiated prior to the emergency call, n = 103

Dataset eligible for analysis
n = 108,607
918 OHCA
107,689 non-OHCA

Resuscitation 2019 DOI: 10.1016/j.resuscitation.2019.01.015
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Time-to-recognition

s
70

Dispatchers
79 seconds

31 seconds faster

95% CI: 73-85

p<0.0001
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Results

- Calls: 108.6087

« Cardiac Arrest 918 (0.8 %)

* Human vs machine:

« Sensitivity: 72.5vs 84.1 %

- Specificity: 98.8 vs 97.3 %

* Positive Predictive Value PP
33.0vs 20.9 %

Difference in time-to-recognition
(Dispatcher - machinelearning)
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Resuscitation 2019 DOI: 10.1016/j.resuscitation.2019.01.015
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Can Al recognize cardiac arrest from voicelogs.
Retrospective study all calls in 2014

Status Medical dispatch Machine learning framework
Recognized cardiac arrests 665 772
Unrecognized cardiac arrests 253 146

Cardiac arrest in population 918 918

Stig Nikolaj Fasmer Blomberg
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Time to detection
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Humans vs Machine

Al Is better in recognition of cardiac arrest by just
listening

*Why? Years of experience in one model, remember
every case, use pattern recognition, no human bias

Stig Nikolaj Fasmer Blomberg
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From gut feeling to algorithms and to now Al

A GUIDE T THE MEDICAL DIAGNOSTIC AND TREATMENT
ALGORITHM USED By 1BM's LIATSON COMPUTER SYSTEM

What’s your gut feeling?
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Innovation in EMS —
Al for decision support in dispatch centre
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Perspectives for emergency patient care

*Supporting decision making in emergency call and non-
emergency calls

*Other emergencies (stroke, sepsis, trauma)

*Triage tool making risks assessment (ambulance, emergency
department, hospitalization, intensive care unit, death)

*Adding other health care data into the model
*Guidance to dispatchers during the call 1 Future
*Al being the call taker? P NEXTEXIT X |
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Partnership
for EU Horizon 2020 grant on

Artificial Intelligence to improve emergency patient care
NAKOS, RAKOS, KoKom, SOS Alarm
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Summary
- ldentifying the cardiac arrest during emergency call is essential to
survival

» Using machine learning shows that Al is better than human
identifying cardiac arrest during an emergency call

* The potential of using Artificial Intelligence in emergency care Is
enormous
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More references on Al

* Resuscitation 2019

« https://www.resuscitationjournal.com/article/S0300-9572(18)30975-4/pdf

« BBC podcast: People who fix the world

 BBC https://www.bbc.co.uk/programmes/p07p3fn7



https://www.resuscitationjournal.com/article/S0300-9572(18)30975-4/pdf
https://www.resuscitationjournal.com/article/S0300-9572(18)30975-4/pdf
https://www.bbc.co.uk/programmes/p07p3fn7
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